Project Overview
The AI News Research Agent is an intelligent system that automates news research and synthesis using modern AI technologies. It combines Google’s Gemini 2.0 Flash model with Tavily’s search capabilities in a type-safe framework powered by Pydantic-AI.
System Architecture
flowchart TB subgraph Development["Development Environment"] UV[UV Package Manager] --> |Manages Dependencies| App end subgraph App["Application Core"] UI[Streamlit UI] --> Agent subgraph PydanticAI["Pydantic AI Framework"] Agent[Type-Safe Agent System] --> |Structured Prompts| ModelInterface ModelInterface[Model Interface] --> |Type Validation| Gemini[Gemini 2.0 Flash] Agent --> |Dependency Injection| Tools Tools[Tool System] --> Search[Tavily Search] Results[Research Results] --> |Schema Validation| Agent end Search --> Agent Gemini --> ModelInterface Results --> UI end classDef primary fill:#4c75a6,stroke:#fff,stroke-width:2px,color:#fff classDef secondary fill:#82b1ff,stroke:#fff,stroke-width:2px,color:#fff classDef rust fill:#F74C00,stroke:#fff,stroke-width:2px,color:#fff classDef pydantic fill:#E92063,stroke:#fff,stroke-width:2px,color:#fff class UI,Results primary class ModelInterface,Tools secondary class UV rust class Agent,PydanticAI pydantic
Key Features
Type-Safe Architecture
- Built with Pydantic-AI for robust type checking
- Structured data validation throughout the pipeline
- Clear interface definitions for all components
Advanced LLM Integration
- Uses Google’s Gemini 2.0 Flash model
- Efficient prompt management
- Structured output generation
Real-Time Search
- Integration with Tavily Search API
- Configurable search parameters
- Asynchronous operation
User-Friendly Interface
- Built with Streamlit
- Interactive parameter adjustment
- Clear result presentation
Technical Implementation
Core Components
- Type Definitions
class ResearchResult(BaseModel):
research_title: str = Field(description='Markdown heading describing the article topic')
research_main: str = Field(description='A detailed news article')
research_bullets: str = Field(description='Key points summary')
@dataclass
class SearchDataclass:
max_results: int
todays_date: str
- Agent Configuration
search_agent = Agent(
model,
deps_type=ResearchDependencies,
result_type=ResearchResult,
system_prompt=(
"You are a helpful research assistant and an expert in research. "
"Given a single user query, you will call the 'get_search' tool exactly once, "
"then combine the results."
)
)
- Search Tool Integration
@search_agent.tool
async def get_search(search_data: RunContext[SearchDataclass], query: str) -> dict:
"""Perform a search using the Tavily client."""
results = await tavily_client.get_search_context(
query=query,
max_results=search_data.deps.max_results
)
return json.loads(results)
Technical Implementation details
Dependency Injection
- Clean separation of concerns
- Easily testable components
- Flexible configuration
Async Operations
- Non-blocking search operations
- Efficient resource utilization
- Improved response times
Type Safety
- Runtime type checking
- Clear interface definitions
- Reduced potential for errors
Structured Output
- Consistent response format
- Validated data structures
- Easy integration with frontend
Use Cases
News Research
- Quick synthesis of current events
- Multi-source information gathering
- Automated summarization
Topic Analysis
- Deep dives into specific subjects
- Cross-reference multiple sources
- Structured insights generation
Trend Monitoring
- Track emerging topics
- Analyze developing stories
- Identify key patterns
Future Development
Enhanced Search
- Multiple search provider support
- Advanced filtering options
- Custom search parameters
Improved Processing
- Advanced content synthesis
- Better source verification
- Enhanced summarization
UI Enhancements
- More interactive features
- Custom visualization options
- Advanced result filtering
Source Code
The complete source code is available on GitHub: AI LLM Tutorials Repository
Technical Stack
- Frontend: Streamlit
- AI Model: Google Gemini 2.0 Flash
- Search: Tavily API
- Framework: Pydantic-AI
- Language: Python 3.9+
Conclusion
The AI News Research Agent demonstrates the practical application of modern AI technologies in creating useful tools for information gathering and synthesis. Its type-safe architecture ensures reliability while providing powerful capabilities for automated news research.
The project serves as an example of how to combine different AI services into a cohesive, production-ready application while maintaining code quality and type safety.